Skip to main content
padlock icon - secure page this page is secure

Anti-Mesothelin Nanobodies for Both Conventional and Nanoparticle-Based Biomedical Applications

Buy Article:

$105.00 + tax (Refund Policy)

Mesothelin, a cancer biomarker overexpressed in tumors of epithelial origin, is a target for nanotechnology-based diagnostic, therapeutic, and prognostic applications. The currently available anti-mesothelin antibodies present limitations, including low penetration due to large size and/or lack of in vivo stability. Single domain antibodies (sdAbs) or nanobodies (Nbs) provide powerful solutions to these specific problems. We generated a phage-display library of Nbs that were amplified from B cells of a llama that was immunized with human recombinant mesothelin. Two nanobodies (Nb A1 and Nb C6) were selected on the basis of affinity (K D = 15 and 30 nM, respectively). Nb A1 was further modified by adding either a cysteine to permit maleimide-based bioconjugations or a sequence for the site-specific metabolic addition of a biotin in vivo. Both systems of conjugation (thiol-maleimide and streptavidin/biotin) were used to characterize and validate Nb A1 and to functionalize nanoparticles. We showed that anti-mesothelin Nb A1 could detect native and denatured mesothelin in various diagnostic applications, including flow cytometry, western blotting, immunofluorescence, and optical imaging. In conclusion, anti-mesothelin Nbs are novel, cost-effective, small, and single domain reagents with high affinity and specificity for the tumor-associated antigen mesothelin, which can be simply bioengineered for attachment to nanoparticles or modified surfaces using multiple bioconjugation strategies. These anti-mesothelin Nbs can be useful in both conventional and nanotechnology-based diagnostic, therapeutic and prognostic biomedical applications.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: BIOBODIES; IMMUNOPHENOTYPING; IMMUNOTARGETING; OVARIAN CANCER; QUANTUM DOT; SUPERPARAMAGNETIC IRON OXIDE; TUMOR SPHEROID

Document Type: Research Article

Publication date: July 1, 2015

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more