Skip to main content
padlock icon - secure page this page is secure

Mechanism of Anti-Cancer Activity of Benomyl Loaded Nanoparticles in Multidrug Resistant Cancer Cells

Buy Article:

$106.67 + tax (Refund Policy)

Polymeric chitosan-poly(D,L-lactide-co-glycolide) nanoparticles loaded with benomyl as anticancer drug formulation against multidrug-resistant EMT6/AR1 cells were synthesized by amine-carboxylate reaction. Using transmission electron microscopy, the average size of chitosan-poly(D,L-lactide-co-glycolide) nanoparticles and benomyl-encapsulated polymeric chitosan-poly(D,L-lactide-co-glycolide) nanoparticles was estimated to be 155±20 nm and 160±25 nm, respectively. Fourier transform infrared spectroscopy revealed that poly(D,L-lactide-co-glycolide) and chitosan are linked by covalent bonds. Zeta potentials of benomyl-encapsulated polymeric chitosan-poly(D,L-lactide-co-glycolide) nanoparticles at pH 4, 7.2, and 10 were 30±1.8, 19±0.65, and –22±0.15 mV, respectively, indicating the formation of stable, hydrophilic nanoparticles. The release of benomyl from benomyl-encapsulated polymeric chitosan-poly(D,L-lactide-co-glycolide) nanoparticles followed pH-dependent kinetics. The uptake of fluorescein isothiocyanate-labeled chitosan-poly(D,L-lactide-co-glycolide) nanoparticles was concentration-dependent in both MCF-7 and multidrug-resistant EMT6/AR1 cells. EMT6/AR1 cells showed 10-fold higher resistance to benomyl compared to MCF-7 cells; in contrast, benomyl-encapsulated polymeric chitosan-poly(D,L-lactide-co-glycolide) nanoparticles effectively inhibited proliferation of MCF-7 and EMT6/AR1 cells with a half-maximal inhibitory concentration of 4±0.5 and 9±0.5 μM, respectively. In the presence of a P-glycoprotein inhibitor, the activity of benomyl was increased, suggesting that benomyl is a substrate for P-glycoprotein. Further, benomyl-encapsulated polymeric chitosan-poly(D,L-lactide-co-glycolide) nanoparticles depolymerized microtubules both in interphase and mitosis. It blocked cell cycle progression at G2/M and induced apoptosis in EMT6/AR1 cells, suggesting that benomyl-encapsulated polymeric chitosan-poly(D,L-lactide-co-glycolide) nanoparticles have chemotherapeutic activity against multidrug-resistant cancer cells.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: ANTICANCER THERAPY; APOPTOSIS; BENOMYL; CHITOSAN; DRUG RESISTANCE; MICROTUBULES; POLY(D,L-LACTIDE-CO-GLYCOLIDE) NANOPARTICLES

Document Type: Research Article

Publication date: May 1, 2015

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more