Skip to main content
padlock icon - secure page this page is secure

Unique Biological Degradation Behavior of Stöber Mesoporous Silica Nanoparticles from Their Interiors to Their Exteriors

Buy Article:

$106.73 + tax (Refund Policy)

The degradation behavior of mesoporous silica nanoparticles (MSNs) influences their biological applications. The present study was a systematic investigation of the biological degradation behavior of mesoporous silica synthesized by the Stöber method. Different sized Stöber mesoporous silica nanoparticles were prepared and immersed in simulated body fluid, and degradation curves were obtained by measuring the dissolved silicon content of the fluid. Structural changes during degradation were observed by transmission electron microscope (TEM). The Stöber mesoporous silica nanoparticles tended to become hollow during the degradation process, and each particle was almost completely degradable from its interior to its exterior. Because of this unique degradation behavior, the morphology of the Stöber mesoporous silica nanoparticles can be retained even after over 85% of the silica degraded. Thus, during degradation, the dispersibility of the silica particles was superior to that of MSNs prepared in aqueous phases. Furthermore, the degradation behavior, intracellular distribution, and structural transformation of Stöber mesoporous silica nanoparticles in human embryo kidney 293T cells were investigated by measuring the silicon content in culture medium and analyzing TEM images. When these silica nanoparticles degraded in cells, their size and dispersibility remained unchanged, which would reduce the biological toxicity associated with the accumulation of silica aggregates in tissues. Overall, these results demonstrate that Stöber mesoporous silica nanoparticles can degrade in biological medium from inside to outside and maintain their good dispersibility, which suggests that these nanoparticles have great potential for applications as degradable biomedical materials such as drug carriers.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: BIOLOGICAL; DEGRADATION; MESOPOROUS; SILICA; STÖBER

Document Type: Research Article

Publication date: April 1, 2015

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more