
A Novel, Single Step, Highly Sensitive In-Vitro Cell-Based Metabolic Assay Using Honeycomb Microporous Polymer Membranes
This study describes a novel, simple and versatile system for cell-based assays at the bench-top. The system consists of Polyurethane (PU) based honeycomb membrane with the active compounds/assay reagents dispensed on its pore linings. Membranes with functionalized pores were thus created
and used for conducting cell based assays. As proof-of-concept Flourocein acetate (FDA) and Propidium iodide (PI) were embedded on the pore linings and live/dead assays were performed on L929 and Hacat cell lines. The results proved the sensitivity of the membrane based cell assay. To ensure
the capacity of this system for high throughput applications, membrane based live/dead assay was performed on L929 cells with varying levels of viability. The results from this experiment were quantified by microscopic and spectrofluourimetric techniques both of which were found to correlate
well. It was concluded that this simple membrane based cell assay is highly versatile and enables multiple compounds to be tested on the same cell/tissue. Furthermore, this method requires low volumes of assay reagents and eliminates many of the wet techniques that are involved in a conventional
assay, without compromising on the sensitivity. It is anticipated that this functionalized membrane system could be easily adapted for both manual and automated high content screening experiments including in vitro biomaterial evaluation as well as cytotoxicity of nanomaterials.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics
Keywords: BREATH FIGURE; CELL BASED ASSAY; HIGH THROUGHPUT; HONEYCOMB MEMBRANES
Document Type: Research Article
Publication date: April 1, 2015
- Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
- Editorial Board
- Information for Authors
- Subscribe to this Title
- Terms & Conditions
- Ingenta Connect is not responsible for the content or availability of external websites