Skip to main content
padlock icon - secure page this page is secure

Solid Lipid Nanoparticles as Non-Viral Vectors for Gene Transfection in a Cell Model of Fabry Disease

Buy Article:

$106.81 + tax (Refund Policy)

Here, we demonstrate the ability of solid lipid nanoparticle-based non-viral vectors to increase the α-galactosidase A levels of the IMFE1 cell line, an in vitro model for target cells in Fabry disease. For this purpose, vectors containing the pR-M10-αGal A plasmid, which encodes the α-galactosidase A enzyme, were prepared; the in vitro transfection efficacy was studied in IMFE1 cells, and the results were confirmed by RT-PCR. The cellular uptake of the vectors, intracellular disposition of the plasmid, and probable endocytosis pathways of the nanoparticles were also analyzed. The vectors used for the studies carried protamine (P-DNA-SLN), dextran and protamine (D-P-DNA-SLN), or hyaluronic acid of two different molecular weights and protamine (HA150-P-DNA-SLN or HA500-P-DNA-SLN). The new formulations, which presented a particle size in the range of nanometers (from 218 nm to 348 nm) and a positive superficial charge, were able to increase α-galactosidase A activity up to 4-fold in comparison to non treated IMFE1 cells. The most efficient vectors were those that included HA, and no differences due to changes in the molecular weight of HA were detected. The observed lack of colocalization with each of the four different Nile Red-labeled vectors and transferrin or cholera toxin appears to indicate that clathrin- and caveolae-independent pathways may be involved in their cellular uptake. Additionally, colocalization with LysoTracker® indicated that the formulations were exposed to lysosomal activity, which may be responsible for the release of the plasmid from the vector. In conclusion, we reveal the potential of SLN-based vectors to efficiently transfect an immortalized Fabry patient cell line.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: March 1, 2015

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more