Skip to main content
padlock icon - secure page this page is secure

Intracellular Uptake of Curcumin-Loaded Solid Lipid Nanoparticles Exhibit Anti-Inflammatory Activities Superior to Those of Curcumin Through the NF-κB Signaling Pathway

Buy Article:

$106.67 + tax (Refund Policy)

Curcumin (Cur) is a naturally derived, novel anti-inflammatory agent, but its poor solubility limits its clinical use. The aim of the present study was to encapsulate Cur into solid lipid nanoparticles (SLNs) to improve its anti-inflammatory activity. The Cur-loaded SLNs (Cur-SLNs) were prepared using emulsification and low-temperature solidification methods. In contrast to free Cur, the particles were well dispersed in aqueous medium, showing a narrow size distribution with a range of 55 ± 1.2 nm, a zeta potential value of –26.2 ± 1.3 mV, and a high drug loading efficiency of 37% ± 2.5%. The sustained release of Cur was observed for up to 6 days. The particles displayed enhanced stability in phosphate-buffered saline by protecting the encapsulated Cur against hydrolysis and biotransformation, as well as increasing biocompatibility. Cur-SLNs were more effective than free Cur at reducing the expression levels of several proinflammatory mediators, including inflammatory cytokines (IL-6, TNF-α, and IL-1β) and nitric oxide (NO), under in vitro conditions. By Western blotting, we found that Cur-SLNs were more active than free Cur in inhibiting the LPS-induced activation of the inflammatory transcription factor NF-κB through the suppression of IκB kinase activation. Compared to free Cur, Cur-SLNs had an increased intracellular uptake over time (observed after 24 h) in RAW264.7 cells. Moreover, the Cur-SLNs (≥20 μM) significantly improved RAW264.7 cell viability by inhibiting apoptosis. Thus, these results demonstrated that SLNs could be used as potential anti-inflammatory drug carriers for the treatment of various chronic diseases.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: ANTI-INFLAMMATION; CELLULAR UPTAKE; CURCUMIN; SOLID LIPID NANOPARTICLES (SLNS); SUSTAINED RELEASE

Document Type: Research Article

Publication date: March 1, 2015

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more