Skip to main content
padlock icon - secure page this page is secure

Biophysical Interactions of Polyamidoamine Dendrimer Coordinated Fe3O4 Nanoparticles with Insulin

Buy Article:

$106.81 + tax (Refund Policy)

Advanced delivery systems, such as nano/micro carriers have not been studied significantly for their molecular interactions with serum proteins and other biologically relevant macromolecules. Here, we investigated the effect of surface chemistry of iron oxide (Fe3O4) nanoparticles on molecular interactions with human insulin by fluorescence, XRD and FTIR spectroscopy. Nanoparticles of Fe3O4 were chemically modified as Fe3O4-glutathione (GSH) and Fe3O4-GSH-polyamidoamine generation 4 (PAMAM G4) dendrimer. Our results demonstrate that, Fe3O4 and its conjugates such as Fe3O4-GSH, Fe3O4-GSH-G4 quenched insulin fluorescence, indicating strong interactions between insulin protein molecule and Fe3O4. The fluorescence quenching constants Ksv were obtained as 0.0367 × 103, 0.0303 × 103 and 0.0131 × 103 M and the binding constant K were found to be 27.095, 8.404 and 6.026 mM for Fe3O4, Fe3O4-GSH and Fe3O4-GSH-PAMAM G4, respectively. Both the Ksv and K (binding constant) values revealed that the interaction of Fe3O4 with insulin to be stronger over to dendrimer conjugates. In addition, the FTIR spectra suggested that the presence of nanoparticles results in secondary structure alteration in the insulin conformation. The study implies the critical evaluation of new delivery systems in establishing the biocompatibility, especially when delivered by systemic route.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: DENDRIMER; FE3O4; FLUORESCENCE; GLUTATHIONE; INSULIN; INTERACTION

Document Type: Research Article

Publication date: July 1, 2014

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more