Skip to main content
padlock icon - secure page this page is secure

Tea Nanoparticles for Immunostimulation and Chemo-Drug Delivery in Cancer Treatment

Buy Article:

$106.87 + tax (Refund Policy)

Many health benefits have been associated with tea consumption. In an effort to elucidate the source of these health benefits, numerous phytochemicals have been extracted from tea infusions, some of which have demonstrated promise as clinical therapeutics for cancer therapy. Considering the advantageous properties of organic nanoparticles, the purpose of this study is to develop a method for isolating nanoparticles from tea leaves, and explore potential biomedical applications for these nanoparticles. First, an infusion-dialysis procedure for isolating tea nanoparticles (TNPs) from green tea infusions is developed. Second, atomic force microscopy and scanning electron microscopy reveal that the TNPs are spherical with diameters of 100–300 nm. Third, electrophoretic light scattering is used to determine that the TNPs have a zeta potential of – 26.52 mV at pH 7.0. Finally, chemical analysis demonstrates that (–) Epigallocatechin gallate, caffeine, and theobromine are not found in the TNPs. Interestingly, the TNPs do enhance the in vitro secretion of cytokines IL-6, TNF-α, and G-CSF, as well as the chemokines RANTES, IP-10, MDC from mouse macrophages RAW264.7, indicating an immunostimulatory effect. As a nanocarrier, the TNPs are able to form complexes with doxorubicin (DOX) and have the potential for applications in drug delivery. Further the DOX-loaded TNPs increase the cellular DOX uptake, compared to free DOX, leading to higher cytotoxicity in the A549 human lung cancer and MCF-7 breast cancer cells. More importantly, the DOX-loaded TNPs significantly increase the DOX uptake and cytotoxicity in MCF-7/ADR multidrug resistant breast cancer cells. In this work, an infusion-dialysis procedure is developed for isolation of the TNPs from green tea, and the potential of these nanoparticles as a multifunctional nanocarrier for cancer therapy in vitro is explored.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: June 1, 2014

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more