Skip to main content

Bi-Layer Composite Dressing of Gelatin Nanofibrous Mat and Poly Vinyl Alcohol Hydrogel for Drug Delivery and Wound Healing Application:In-Vitro and In-Vivo Studies

Buy Article:

$107.14 + tax (Refund Policy)

Present investigation involves the development of a bi-layer dressing of gelatin nanofibrous mat loaded with epigallocatechin gallate (EGCG)/poly vinyl alcohol (PVA) hydrogel and its in-vivo evaluation on full-thickness excision wounds in experimental Wistar rats. Nanomorphological observation, porosity, effect of crosslinking on tensile strength, physical stability and drug release profile in phosphate buffer and biocompatibility aspects of electrospun nanomat were investigated by various physico-chemical tools. EGCG a release profile was found to increase from 2–4 days with decreasing crosslinking time from 15 to 5 min. PVA hydrogels were prepared by freeze-thaw method and has been utilized as a protective and hydrating outer layer of the bi-layer dressing. Topical application of bi-layer composite dressing loaded with EGCG improve the healing rate in experimental rats as acute wounds model which was evidenced by significant increase in DNA (∼42%), total protein (∼32%), hydroxyproline (∼26%) and hexosamine (∼24%) contents. A faster wound contraction was observed in wounds treated with composite dressing from∼14% to 47%. Histopathological examination revealed significant improvement in angiogenesis, re-epithelialization and less inflammatory response in comparison to control. Van-Gieson's collagen stains revealed matured, compact and parallel deposition of collagen fibrils on day 12. These results were supported by up-regulated expressions of matrix metalloproteinase (MMPs-2 and 9) by gelatin zymography. Control release of EGCG, 3D porous architecture of nanofibrous scaffolds as well as moist microenvironment provides ideal conditions for uninterrupted wound healing.

Keywords: CONTROL RELEASE; ELECTROSPUN NANOFIBRES; GELATIN; HYDROGEL DRESSINGS; POLYVINYL ALCOHOL; WOUND HEALING

Document Type: Research Article

Publication date: 01 January 2013

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content