Skip to main content
padlock icon - secure page this page is secure

Development of Small Diameter Fibrous Vascular Grafts with Outer Wall Multiscale Architecture to Improve Cell Penetration

Buy Article:

$106.73 + tax (Refund Policy)

This work explains about the development of a unique tubular scaffold for vascular tissue engineering. The inner layer/layers was made up of aligned poly (lactic acid) (PLA) nano fibers and outer layers were composed of random multiscale fibers of poly(caprolactone) (PCL)/PLA providing larger pores for Smooth Muscle Cell (SMC) penetration. The fabricated scaffolds were characterized by SEM. Cell attachment and infiltration studies using SMCs on the multiscale fibers were characterized by SEM and confocal microscopy. Blood compatibility of the scaffold was analysed by haemolysis-coagulation assays, platelet activation studies and the effect of material/fiber alignment on the morphological stability of Red Blood Cells (RBCs) were evaluated using SEM. Since this hierarchically designed tubular scaffold closely mimics the morphology of native vessel, this could be a better candidate for vascular tissue engineering.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Short Communication

Publication date: July 1, 2013

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more