Skip to main content
padlock icon - secure page this page is secure

Hemostasis Disorders Caused by Polymer Coated Iron Oxide Nanoparticles

Buy Article:

$106.73 + tax (Refund Policy)

Background. Superparamagnetic iron oxide nanoparticles (SPIONs) are inorganic nanomaterials gaining strong clinical interest due to their increasing number of biological and medical applications. The stabilization of SPIONs in a biocompatible stable suspension (bioferrofluid) is generally achieved by an adequate polymeric coating. As many applications using these materials are intended for clinical use through intravenous injection, it is of outmost importance to evaluate heir hemostatic behaviour. Objectives. The aim of this work is to evaluate the hemocompatibility of selected polymer coated bioferrofluids and of their separated components by observing the effects of the bioferrofluid on: the coagulation process—by measuring the prothrombin time (PT) and activated partial thromboplastin time (aPTT)–, the complete blood count (CBC)—Erythrocytes, Leucocytes, Platelets, Hemoglobin and hematocrit—and the hemolysis. Methods. A SPIONs/bioferrofluid model consisting of a magnetic core of iron oxide nanoparticles embedded within poly(4-vinyl pyridine) (P4VP) and all coated with polyethylene glycol (PEG) has been selected. Results and Conclusions. By increasing the concentration of the bioferrofluids an inhibitory effect on the intrinsic pathway of blood coagulation is observed, as indicated by significant increase in aPTT in vitro while PT values stay normal. The effect of the coating components on the inhibition of blood coagulation process shows that PEG has no effect on the process while the P4VP-g-PEG copolymer coating has a strong anticoagulant effect indicating that P4VP is at the origin of such effects. The studied bioferrofluids have no effect on the CBC neither they show in vitro hemolytic effect on blood.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: COAGULATION; HEMOCOMPATIBILITY; HEMOSTASIS; PROTHROMBIN TIME; SUPERPARAMAGNETIC IRON OXIDE NANOPARTICLES; THROMBOPLASTIN TIME

Document Type: Research Article

Publication date: July 1, 2013

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more