Skip to main content
padlock icon - secure page this page is secure

The Local Heating Effect by Magnetic Nanoparticles Aggregate on Support Lipid Bilayers

Buy Article:

$106.73 + tax (Refund Policy)

In this paper, we established a theoretical model to investigate the local heating effect of magnetic nanoparticles (MNPs) aggregate on the support lipid bilayers (SLBs) under external alternating current (AC) magnetic field, which may be helpful to understand hyperthermia at single cell level. Using atomic force microscope (AFM), the transformation of the support phospholipid bilayers surrounding MNPs aggregate was observed in real-time. We found that the fluidity of lipid bilayers changed when the size of MNPs aggregate larger than 200 nm, as a result of magnetic heating in the AC magnetic field. These experimental data were consistent with the simulation results, which demonstrated the valid of our established model, as well as described more realistically the above phenomenon.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: ATOMIC FORCE MICROSCOPE (AFM); HYPERTHERMIA; MAGNETIC NANOPARTICLES; PHASE BEHAVIOR; SUPPORT LIPID BILAYERS (SLBS)

Document Type: Research Article

Publication date: July 1, 2013

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more