Skip to main content
padlock icon - secure page this page is secure

A Study on Hemodynamic Characteristics at the Stenosed Blood Vessel Using Computational Fluid Dynamics Simulations

Buy Article:

$106.34 + tax (Refund Policy)

In this study, we have used computational fluid dynamics to investigate the blood flow in the stenosed blood vessels. The numerical simulation using commercial software ADINA 8.6 were solved about the stenosed blood vessel according to the percent of stenosis and Reynolds number. The blood flow in the normal and stenosed blood vessel was grasped for the validity of the model. The characteristic of the pulsatile flow changed through the steady state flow and analysis of the pulsatile flow according to the time was grasped. The computational model with the characteristics of the fluid-structure interaction is introduced to investigate the wall shear stress, pressure distribution and axial flow velocity. The results show that axial flow velocity and wall shear stress in the region of stenosis was increased by increasing percent of stenosis and Reynolds number. Also, we can know that in the stenosed blood vessel the possibility of the generation of the aneurysm was increased by increasing Reynolds number and percent of stenosis.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: July 1, 2013

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more