Skip to main content

Polyethylene Glycol-Modified Gelatin/Polylactic Acid Nanoparticles for Enhanced Photodynamic Efficacy of a Hypocrellin Derivative In Vitro

Buy Article:

$107.14 + tax (Refund Policy)

The present study focused on the development of a novel biodegradable nanoparticle system based on polyethyleneglycol-modified gelatin (PEG-GEL) and polylactic acid (PLA) biopolymers for improving the photodynamic efficacy of cyclohexane-1,2-diamino hypocrellin B (CHA2HB), a potent photodynamic therapeutic (PDT) agent. The CHA2HB-loaded PEG-GEL/PLA nanoparticles showed near-spherical morphology with an average size of 190 nm at a PLA to PEG-GEL ratio of 1:3. The drug loading was sufficient enough to produce potentially toxic reactive oxygen species (ROS) needed for photodynamic therapy (PDT). Slow and controlled drug release was observed in normal conditions, whereas enzyme assistance resulted in a relatively fast release due to partial disintegration of CHA2HB-loaded PEG-GEL/PLA nanoparticles. In vitro experiments indicated that CHA2HB-loaded PEG-GEL-PLA nanoparticles are efficiently taken up by cancer cells such as human breast adenocarcinoma (MCF-7), human gastric sarcoma (AGS) and mice specific Dalton's lymphoma (DLA) in a time dependent manner. Further, CHA2HB-loaded PEG-GEL/PLA nanoparticles evoked superior phototoxicity compared to free-CHA2HB towards all the three cell lines investigated. Interestingly, PDT effectiveness was different for the different cell type studied. CHA2HB-loaded PEG-GEL/PLA nanoparticles induced both apoptotic and necrotic cell death as a result of photoirradiation. Thus, our data suggest that PEG-GEL/PLA nanoparticles are highly effective in delivery and phototoxic enhancement of CHA2HB against model cancer cells in vitro.

Keywords: HYPOCRELLIN; NANOPARTICLES; PHOTODYNAMIC THERAPY; PHOTOTOXICITY; POLYETHYLENEGLYCOL MODIFIED GELATIN; POLYLACTIC ACID

Document Type: Research Article

Publication date: 01 February 2013

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content