Skip to main content

Bone Formation Induced by Growth Factors Embedded into the Nanostructured Particles

Buy Article:

$107.14 + tax (Refund Policy)

Tissue engineering has merged with stem cell biotechnology with development of new sources of transplantable biomaterials for the treatment of bone tissue diseases. Bone defects are expected to benefit from this new biotechnology because of the low self-regenerating capacity of bone matrix secreting cells. The differentiation of stem cells to bone cells using bi-functionalized multilayered particles is presented. The functionalized particles are composed of poly-glutamic acid (PGA) and poly-L-lysine (PLL) with two bone growth factors (BMP-2 and TGF1 embedded into the multilayered film. The induction of bone from these bioactive particles incubated with embryonic stem cells was demonstrated in vitro. We report the demonstration of a multilayered particle-based delivery system for inducing bone formation in vivo. This new strategy is an alternative approach for in vivo bone formation.

Keywords: BONE INDUCTION; GROWTH FACTORS; NANOSTRUCTURED MATERIALS; OSTEOBLASTS; PARTICLES; STEM CELLS

Document Type: Research Article

Publication date: 01 June 2011

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content