Skip to main content
padlock icon - secure page this page is secure

Drug Release from Hydrogel: A New Understanding of Transport Phenomena

Buy Article:

$106.64 + tax (Refund Policy)

In tissue engineering, i.e., in combined advanced technologies to replace damaged or missing parts of living tissues, emerging strategies strongly point toward the use of hydrogels also for their ability of being vehicles for local controlled drug delivery. The investigation of drug release mechanisms in such matrices thus plays a key role in the design of smart system but literature is still very controversial on theoretical interpretations and understanding of available data. In this framework we used the new HRMAS-NMR DOSY technique to study the diffusive motions of sodium fluorescein, a drug mimetic small chromophoric molecule, loaded in a promising hydrogel developed for tissue engineering. While fluorescein behavior in water was as expected, also showing aggregation from mid concentrations, data collected within hydrogel samples surprisingly showed no aggregation and diffusion coefficients were always higher with respect to aqueous solution. Furthermore, the promotion of diffusion increased along with fluorescein concentration. The proportion of this effect was directly linked to hydrogel mesh size, thus carrying intrinsic novelty, but also complexity, and suggesting that not only strictly hydrodynamic effects should be considered but also electrostatic interactions between polymer chains and drug molecules might be key players in avoiding fluorescein aggregation and also affecting diffusivity.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: DIFFUSION; DRUG DELIVERY; HRMAS; HYDROGEL; REGENERATIVE MEDICINE; TRANSPORT PHENOMENA

Document Type: Research Article

Publication date: June 1, 2011

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more