Skip to main content
padlock icon - secure page this page is secure

The Effect of Geometric Shape on the Release Properties of Metronidazole from Lipid Matrix Tablets

Buy Article:

$106.73 + tax (Refund Policy)

In this study, the lipophilic matrix tablets of metronidazole were prepared with Cutina HR (hydrogenated castor oil), stearic acid, Compritol ATO 888 (glyceryl behenate) and Precirol ATO 5 (glycerol palmitostearate) in two different shapes; cylinder and hexagonal. Our first aim was to investigate the influence of the lipid excipients and geometric shape on the release behavior of metronidazole, and the second aim was to investigate the influence of tablet surface area/volume (SA/V) ratio on drug release from controlled release matrix tablets. In vitro release test was performed using a standard USP dissolution apparatus I. Hardness, surface/volume ratio and friability were determined. The hexagonal tablets were harder than the cylinder tablets. Stearic acid showed the highest release rates for both geometric shapes reflecting the highest surface area and the lowest SA/V ratio. According to power law analysis, the diffusion mechanism was expressed as a Fickian diffusion for all lipid matrix tablets. The square root of time relationship was operative for all tablets. Higuchi kinetic constants obtained with hexagonal tablets were higher than the cylinder tablets. As the type of lipid matrix, the geometric shape of the tablets was also effective on the diffusion and release kinetics. From the present study, it was shown that surface area and volume ratio may be used as parameters for the evaluation of the drug release profile.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: August 1, 2009

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more