Skip to main content
padlock icon - secure page this page is secure

Cell Culture on a Carbon Nanotube Scaffold

Buy Article:

$106.81 + tax (Refund Policy)

The developments of nanoscale substance such as carbon nanotubes (CNTs) for medical applications have attracted a great deal of attention. In the present study, an attempt was made to development of CNTs as scaffolds for cell culture. CNT scaffolds were formed on polycarbonate membranes by vacuum filtration and cell proliferation and morphology were investigated using a scanning electron microscopy. Osteoblast cells (bone-forming cell) on CNTs showed excellent proliferation with extension of cell morphology in all directions. Numerous filopodia were extended from cells toward the inside of fibrous aggregates of CNTs and tightly bound to scaffolds. These results suggest that CNTs can be used as scaffolds with excellent affinity for cell adhesion.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: December 1, 2005

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more