Skip to main content
padlock icon - secure page this page is secure

Magneto-Electric Response and Functionality in Barium Ferrite/Barium Titanate/Epoxy Resin Nanocomposites

Buy Article:

$106.67 + tax (Refund Policy)

Hybrid nanocomposites with barium ferrite and barium titanate nanoparticles embedded within an epoxy resin matrix, were prepared and studied, varying the fillers content. The morphology of the fabricated specimens was examined by means of scanning electron microscopy and energy dispersive X-ray spectroscopy. Dielectric and magnetic properties of the nanocomposites were investigated via broadband dielectric spectroscopy and magnetization tests, respectively. Fine dispersions of nanofillers were detected via electron microscopy in all studied cases. Dielectric permittivity increases with diminishing frequency and increasing temperature and filler content. Recorded relaxation processes are attributed to interfacial polarization, between matrix and nanoparticles, glass to rubber transition of the polymer matrix (α-relaxation), and re-arrangement of polar-side groups of the main polymer chain (β-relaxation). Magnetization and magnetic saturation increase with the amount of barium ferrite nanoparticles.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: BARIUM FERRITE; BARIUM TITANATE; DIELECTRIC PROPERTIES; MAGNETIC PROPERTIES; NANOCOMPOSITES

Document Type: Research Article

Publication date: March 1, 2017

More about this publication?
  • Journal of Advanced Physics is an interdisciplinary peer-reviewed journal consolidating research activities in all experimental and theoretical aspects of advanced physics. The journal aims in publishing articles of novel and frontier physics that merit the attention and interest of the whole physics community. JAP publishes review articles, full research articles, short communications of important new scientific and technological findings in all latest research aspects of physics.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more