Linguistic-Based SPARQL Translation Model for Semantic Question Answering System
Semantic Question Answering (SQA) aims to translate natural language (NL) questions to Simple Protocol and RDF Query Language (SPARQL) queries to retrieve answer from linked data. SQA deals with the complexity of NL questions because of the users’ styles of writing. Furthermore,
the process to construct the SPARQL query to retrieve answer from linked data is complex due to the different merging scenarios depending on the six meta-mapping aspects: (1) the question type; (2) the sequence of important POS tags; (3) the preposition occurrence (4) the datatype of the matched
RDF triples; (5) the resource heterogeinity; (6) the structure of the matched RDF triples. To date, most existing researchers on SQA system have treated the focus for SQA system to accept complex NL question separately from the focus to address meta-mapping scenarios. The motivation of this
study is to design and develop an SQA system that accepts complex NL questions while addressing the meta-mapping scenarios. This is vital because each user has their own idiosyncrasy in composing NL question which needs to be translated to SPARQL query that involve different merging meta-mapping
scenarios. We designed the selective POS tag extraction technique and the semantic representation composition technique to handle the complex NL questions. Meanwhile, we formulated a new linguistic-based SPARQL translation model to address the meta-mapping scenarios. The model is formulated
using our proposed QALD dataset analysis methodology which can also be used by other researchers to implement on any QALD dataset. Model-Driven Semantic Question Answering (MDSQA) system that is integrated with the two techniques and formulated model is developed to automate the translation
of the NL questions to SPARQL queries. MDSQA is evaluated using the QALD-3 test dataset that consists of 100 NL questions as input. The output of the MDSQA are the constructed SPARQL queries. The evaluation results are derived by comparing the constructed SPARQL queries against the actual
SPARQL queries provided by the QALD-3 test dataset. MDSQA is able to process all complex NL questions in QALD-3 which consist of simple and complex NL questions without any manual modification of the question. Based on precision and recall of answer type, SPARQL query form, number of triples,
placement of triples and SPARQL condition, MDSQA is capable of addressing meta-mapping scenario. Further enhancement is needed to address the drawbacks of this approach.
Keywords: Complex Question; Linked Data; Natural Language Question; SPARQL; Semantic Question Answering
Document Type: Research Article
Affiliations: 1: Department of Computer Science, Faculty of Computer Science and Information Technology, University Putra Malaysia, Malaysia 2: Knowledge Technology Research Group, Center for Artificial Intelligent Technology, Faculty of Information Science and Technology, National University of Malaysia, Malaysia
Publication date: February 1, 2018
- ADVANCED SCIENCE LETTERS is an international peer-reviewed journal with a very wide-ranging coverage, consolidates research activities in all areas of (1) Physical Sciences, (2) Biological Sciences, (3) Mathematical Sciences, (4) Engineering, (5) Computer and Information Sciences, and (6) Geosciences to publish original short communications, full research papers and timely brief (mini) reviews with authors photo and biography encompassing the basic and applied research and current developments in educational aspects of these scientific areas.
- Editorial Board
- Information for Authors
- Subscribe to this Title
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content