Skip to main content

Recreating Fundamental Effects in the Laboratory?

Buy Article:

$107.14 + tax (Refund Policy)

This article provides a brief (non-exhaustive) overview of some possibilities for recreating fundamental effects which are relevant for black holes (and other gravitational scenarios) in the laboratory. Via suitable condensed matter analogues and other laboratory systems, it might be possible to model the Penrose process (superradiant scattering), the Unruh effect, Hawking radiation, the Eardley instability, black-hole lasers, cosmological particle creation, the Gibbons-Hawking effect, and the Schwinger mechanism. Apart from an experimental verification of these yet unobserved phenomena, the study of these laboratory systems might shed light onto the underlying ideas and problems and should therefore be interesting from a (quantum) gravity point of view as well.

Document Type: Review Article

Publication date: 01 June 2009

More about this publication?
  • ADVANCED SCIENCE LETTERS is an international peer-reviewed journal with a very wide-ranging coverage, consolidates research activities in all areas of (1) Physical Sciences, (2) Biological Sciences, (3) Mathematical Sciences, (4) Engineering, (5) Computer and Information Sciences, and (6) Geosciences to publish original short communications, full research papers and timely brief (mini) reviews with authors photo and biography encompassing the basic and applied research and current developments in educational aspects of these scientific areas.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content