Skip to main content
padlock icon - secure page this page is secure

Free Content Oxygen Requirement to Reverse Altitude-Induced Hypoxemia with Continuous Flow and Pulsed Dose Oxygen

Download Article:
(HTML 43.4 kb)
(PDF 708.9 kb)
BACKGROUND: Hypoxemia secondary to reduced barometric pressure is a complication of ascent to altitude. We designed a study to compare the reversal of hypobaric hypoxemia at 14,000 ft with continuous flow oxygen from a cylinder and pulsed dose oxygen from a portable concentrator.

METHODS: There were 30 healthy volunteers who were randomized to one of three study groups, placed in an altitude chamber, and ascended to 14,000 ft. There were 10 subjects in each study group. Subjects breathed room air for 10 min to induce hypoxemia. Oxygen was then delivered via a nasal cannula from a cylinder at 1, 2, or 3 lpm of continuous flow for 10 min. The subjects again breathed room air at altitude for 10 min and were then placed on pulsed dose oxygen and titrated to obtain the continuous flow Spo2 equivalent. Spo2, Etco2, RR, HR, Hgb, and tissue oxygenation (Sto2) were continuously recorded.

RESULTS: The 1-lpm group's Spo2 range was 89–99%. The 2-lpm group's Spo2 range was 95–98%, and the 3-lpm group's Spo2 range was 95–99%. The 2-lpm and 3-lpm flows were able to correct hypoxemia in every subject. The mean pulsed dose required to achieve an equivalent Spo2 ranged from 36.8 ml ± 18.9 ml in the 1-lpm arm, and 102.4 ml ± 53.8 in the 3-lpm arm.

CONCLUSIONS: Portable oxygen concentrators using pulsed dose technology corrected hypoxemia in every subject. Oxygen concentrators may be an alternative to liquid oxygen or cylinders for use during aeromedical evacuation.

Blakeman TC, Rodriquez D Jr, Gerlach TW, Dorlac WC, Johannigman JA, Branson RD. Oxygen requirement to reverse altitude-induced hypoxemia with continuous flow and pulsed dose oxygen. Aerosp Med Hum Perform. 2015; 86(4):351–356.

21 References.

No Supplementary Data.
No Article Media
No Metrics

Keywords: aeromedical; concentrator; hypobaric; hypoxemia; oxygen

Document Type: Research Article

Publication date: April 1, 2015

More about this publication?
  • This journal (formerly Aviation, Space, and Environmental Medicine), representing the members of the Aerospace Medical Association, is published monthly for those interested in aerospace medicine and human performance. It is devoted to serving and supporting all who explore, travel, work, or live in hazardous environments ranging from beneath the sea to the outermost reaches of space. The original scientific articles in this journal provide the latest available information on investigations into such areas as changes in ambient pressure, motion sickness, increased or decreased gravitational forces, thermal stresses, vision, fatigue, circadian rhythms, psychological stress, artificial environments, predictors of success, health maintenance, human factors engineering, clinical care, and others. This journal also publishes notes on scientific news and technical items of interest to the general reader, and provides teaching material and reviews for health care professionals.

    To access volumes 74 through 85, please click here.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • Submit Articles
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more