Skip to main content
padlock icon - secure page this page is secure

Overaccumulation of Higher Polyamines in Ripening Transgenic Tomato Fruit Revives Metabolic Memory, Upregulates Anabolism-Related Genes, and Positively Impacts Nutritional Quality

Buy Article:

$50.00 + tax (Refund Policy)

Vegetables and fruits are essential components of the human diet as they are sources of vitamins, minerals, and fiber and provide antioxidants that prevent chronic diseases. Our goal is to improve durable nutritional quality of tomato fruit. We developed transgenic tomatoes expressing yeast S-adenosylmethionine decarboxylase (ySAMdc) gene driven by a fruit-specific E8 promoter to investigate the role of polyamines in fruit metabolism. Stable integration of E8-ySAMdc chimeric gene in tomato genome led to ripening-specific accumulation of polyamines, spermidine (Spd) and spermine (Spm), which in turn affected higher accumulation of glutamine, asparagine, and organic acids in the red fruit with significant decrease in the contents of valine, aspartate, sucrose, and glucose. The metabolite profiling analysis suggests that Spd/Spm are perceived as signaling organic-N metabolites by the fruit cells, resulting in the stimulation of carbon sequestration; enhanced synthesis of biomolecules; increased acid to sugar ratio, a good attribute for the fruit flavor; and in the accumulation of another vital amine, choline, which is an essential micronutrient for brain development. A limited transcriptome analysis of the transgenic fruit that accumulate higher polyamines revealed a large number of differentially expressed genes, about 55 of which represented discrete functional categories, and the remaining 45 were novel, unknown, or unclassified: amino acid biosynthesis, carotenoid biosynthesis, cell wall metabolism, chaperone family, flavonoid biosynthesis, fruit ripening, isoprenoid biosynthesis, polyamine biosynthesis, signal transduction, stress/defense-related, transcription, translation, and vacuolar function. There was a good correspondence between some gene transcripts and their protein products, but not in the case of the tonoplast intrinsic protein, which showed post-transcriptional regulation. Higher metabolic activity of the transgenic fruit is reflected in higher respiratory activity, and upregulation of chaperones and mitochondrial cytochrome oxidase transcripts compared to the control. These transgenic plants are a new resource to understand the role of Spd/Spm in fruit biology. Transcriptome analysis and metabolic profiles of Spd/Spm accumulating, transgenic fruit suggest the presence of an intricate regulation and interconnection between certain metabolic pathways that are revived when Spd and Spm likely reach a certain threshold. Thus, polyamines act as antiapoptotic regulatory molecules and are able to revive metabolic memory in the tomato fruit.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: U.S. Department of Agriculture, Agricultural Research Service, Sustainable Agricultural Systems Laboratory, The Henry A. Wallace Beltsville Agricultural Research Center, Bldg 001, Beltsville, MD 20705-2350. 2: Mokwon University, Department of Microbiology, Doan-dong 800, Seo-ku, Taejon 302-729, Republic of Korea. 3: University of Victoria, Department of Biochemistry, PO Box 3020, Victoria, BC, Canada V8W 3N5. 4: University of Maryland, Department of Horticulture, Plant Science Bldg, College Park, MD 20742-5611. 5: Purdue University, Department of Horticulture and Landscape Architecture, W. Lafayette, IN 47907.

Publication date: September 1, 2007

More about this publication?
  • The Journal of AOAC INTERNATIONAL publishes refereed papers and reviews in the fields of chemical, biological and toxicological analytical chemistry for the purpose of showcasing the most precise, accurate and sensitive methods for analysis of foods, food additives, supplements and contaminants, cosmetics, drugs, toxins, hazardous substances, pesticides, feeds, fertilizers and the environment available at that point in time. The scope of the Journal includes unpublished original research describing new analytical methods, techniques and applications; improved approaches to sampling, both in the field and the laboratory; better methods of preparing samples for analysis; collaborative studies substantiating the performance of a given method; statistical techniques for evaluating data. The Journal will also publish other articles of general interest to its audience, e.g., technical communications; cautionary notes; comments on techniques, apparatus, and reagents.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Journal Information
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more