Skip to main content
padlock icon - secure page this page is secure

Lipid Droplet Biogenesis and Function in the Endothelium

Buy Article:

$62.00 + tax (Refund Policy)


Fatty acids (FA) are transported across the capillary endothelium to parenchymal tissues. However, it is not known how endothelial cells (EC) from large vessels process a postprandial surge of FA.


This study was designed to characterize lipid droplet (LD) formation in EC by manipulating pathways leading to the formation and degradation of LD. In addition, several functions of LD-derived FA were assessed.

Methods and Results:

LD were present in EC lining the aorta after the peak in plasma triglycerides initiated by a gavage of olive oil in mice, in vivo. Similarly, in isolated aorta, oleic acid treatment generates LD in EC ex vivo. Cultured EC readily form LD largely via the enzyme DGAT (diacylglycerol O-acyltransferase 1) and degrade LD via ATGL (adipocyte triglyceride lipase) after FA loading. Functionally, LD-derived FA are dynamically regulated and function to protect EC from lipotoxic stress and provide FA for metabolic needs.


Our results delineate endothelial LD dynamics for the first time in vivo and in vitro. Moreover, LD formation protects EC from lipotoxic stress, regulates EC glycolysis, and provides a source of FA for adjacent cells in the vessel wall or tissues.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: endothelial function; endothelium; fatty acids; lipid droplet; lipids; metabolism; triglycerides

Document Type: Research Article

Publication date: April 14, 2017

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more