Skip to main content
padlock icon - secure page this page is secure

Combined In Silico and In Vitro Approach Predicts Low Wall Shear Stress Regions in a Hemofilter that Correlate with Thrombus Formation In Vivo

Buy Article:

$52.00 + tax (Refund Policy)

A major challenge in developing blood-contacting medical devices is mitigating thrombogenicity of an intravascular device. Thrombi may interfere with device function or embolize from the device to occlude distant vascular beds with catastrophic consequences. Chemical interactions between plasma proteins and bioengineered surface occur at the nanometer scale; however, continuum models of blood predict local shear stresses that lead to platelet activation or aggregation and thrombosis. Here, an iterative approach to blood flow path design incorporating In Silico, In Vitro, and In Vivo experiments predicted the occurrence and location of thrombi in an implantable hemofilter. Low wall shear stress (WSS) regions identified by computational fluid dynamics (CFD) predicted clot formation In Vivo. Revised designs based on CFD demonstrated superior performance, illustrating the importance of a multipronged approach for a successful design process.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: bioartificial kidney; hemodynamics; hemofilter; thrombogenicity

Document Type: Research Article

Publication date: March 1, 2018

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more