Skip to main content
padlock icon - secure page this page is secure

Synthesis, Characterization, and Application of m-Phenylendiamine-Modified Amberlite XAD-4 Resin for Preconcentration and Determination of Metal Ions in Water Samples

Buy Article:

$22.00 plus tax (Refund Policy)

A new chelating resin is prepared by coupling Amberlite XAD-4 (Serva, Heidelberg, New York) with m-phenylendiamine through an azo spacer, characterized (by elemental analysis, infrared, and thermogravimetric analysis) and studied for preconcentrating nickel(II), cobalt(II), zinc(II), copper(II), and chromium(III) using flame atomic absorption spectrometry for metal monitoring. The optimum pH values for sorption of the above-mentioned metal ions were 8.5, 8.5, 6.5, 6.5, and 5.5, respectively. The resin was subjected to evaluation through batch binding and column chromatography of the mentioned metal ions. Quantitative desorption occurred instantaneously with 0.5 M HNO 3. Various flowrates of sorption and desorption of nickel(II) have been studied. The sorption capacity was found to be 3.89, 3.27, 2.96, and 3.44 mmol/g of resin for cobalt, copper, zinc, and nickel, respectively. The chelating resin can be reused for 10 cycles of sorption‐desorption without any significant change in sorption capacity. A recovery of >98% was obtained for all the metal ions, with 0.5 M HNO 3 as the eluting agent. The method was applied for determination of metal ions from an industrial wastewater sample.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Amberlite XAD-4; immobilization; solid-phase extraction; trace elements; water samples

Document Type: Research Article

Publication date: 01 May 2009

More about this publication?
  • Water Environment Research (WER) is published monthly, including an annual Literature Review. A subscription to WER includes access to the latest content back to 1992, as well as access to fast track articles. An individual subscription is valid for 12 months from month of purchase.

    Water Environment Research (WER) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more