Skip to main content
padlock icon - secure page this page is secure


The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

The Delaware River Estuary was listed as impaired under Section 303(d) of the Clean Water Act by three bordering states due to the levels of PCBs in fish tissue. Court mandates and administrative agreements required development of a total maximum daily load (TMDL) for PCBs in December 2003. Several factors complicated the TMDL process including the complexity of the system, the limited available data on loadings and ambient concentrations, and an ambitious schedule.

The transport and fate of toxic chemicals, especially hydrophobic organic chemicals (HOCs), is strongly influenced by sorption to organic carbon and interactions between the water column and bedded sediments. The conventional modeling approach is to represent total solids concentrations, often in terms of several different size classes, and assign constant fractions of organic carbon to water column and sediment solids. A disadvantage of this approach is that much effort can be expended on determination of external solids loadings and sediment transport dynamics, however, it is primarily finegrain (silt and clay) solids and not coarse-grain (sand and gravel) solids that are the important sorbents for HOCs. Another disadvantage is that a large proportion of the organic carbon in aquatic systems can be produced internally by algal primary production, which is not represented in conventional models for total solids. One solution is to model both inorganic and algal-derived organic solids, however, a comprehensive approach requires inclusion of total external solids loadings, solids interactions with the sediment bed, primary production, and a sediment diagenesis model that represents transformation and ultimate fate of organic carbon.

We propose a simplified modeling approach that avoids the complexities of explicit representation of sediment transport, primary production or sediment diagenesis. This approach accounts for the principal organic carbon sorbents in the water column, and for net burial of solids and ultimate fate of organic carbon in the sediments. Mass balances are conducted only for biotic carbon (BIC) in the water column and particulate detrital carbon (PDC) in the water column and sediments. Simplifications in the water column include external specification of dissolved organic carbon (DOC) concentrations and BIC loadings from primary production. Simplifications in the sediment include external specification of DOC concentrations, temporally constant values for solids porosity and fraction organic carbon, and a first-order decay rate for PDC. This approach accounts for net solids burial and losses of organic carbon to diagenesis, and constrains the relationship between these parameters to be consistent with observed sediment properties and sediment oxygen demand.

This conceptual model was implemented using a modified version of WASP5/TOXI5 and applied to PCBs in the Delaware River Estuary to support development of a Stage 1 TMDL. This study demonstrates the scientific credibility and utility of a simplified mass balance modeling approach for toxic chemicals whose environmental behavior is influenced by sorption to organic carbon and interactions between the water column and bedded sediments. As part of an adaptive management strategy, this modeling approach can be especially useful for TMDLs in complex systems that have limited available data and/or demanding schedules. This approach is also sufficiently generic for application to other HOCs and heavy metals, and is transferable to other physical systems including streams, rivers, lake or estuaries.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 01 January 2004

More about this publication?
  • Proceedings of the Water Environment Federation is an archive of papers published in the proceedings of the annual Water Environment Federation® Technical Exhibition and Conference (WEFTEC® ) and specialty conferences held since the year 2000. These proceedings are not peer reviewed.

    A subscription to the Proceedings of the Water Environment Federation includes access to most papers presented at the annual WEF Technical Exhibition and Conference (WEFTEC) and other conferences held since 2000. Subscription access begins 12 months after the event and is valid for 12 months from month of purchase. A subscription to the Proceedings of the Water Environment Federation is included in Water Environment Federation (WEF) membership.

    WEF Members: Sign in (right panel) with your IngentaConnect user name and password to receive complimentary access. Access begins 12 months after the conference or event
  • Subscribe to this Title
  • Membership Information
  • About WEF Proceedings
  • WEFTEC Conference Information
  • Learn about the many other WEF member benefits and join today
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more