Skip to main content
padlock icon - secure page this page is secure

Muscular and neuromotor control and learning in the athletic horse

Buy Article:

$68.00 + tax (Refund Policy)

Athletic performance or the kinematics of locomotion is ultimately the result of the actions of muscles. Muscular actions differ depending on the muscle group involved with anatomical and functional properties depending on the primary roles of the muscle; from stabilisation to powering locomotion. The functional (contractile and metabolic) properties of a muscle are determined by its fibre type or relative fibre type proportions in the muscle. The actions of muscle require the coordination of the nervous system with muscle contraction to produce movement or resist movement to avoid unwanted motion and tissue damage. The coordination of muscular action with the nervous system is termed neuromotor control and it requires precise proprioceptive input from the periphery, processing and input from the central nervous system (including learned or trained movements) and involves timing of muscle recruitment as well as muscle contraction. Training of muscles involves training for strength (or force generation) and stamina with measureable physiological changes with training including increased fibre size, alterations in fibre type, alterations in glycogen concentrations and lactate transport and alterations in mitochondrial and capillary density. As well as standard athletic training, skills training can make the difference in athletic performance and injury prevention in the equine athlete. This involves training of neuromotor control; training motor skills by motor relearning and conditional learning. Practical specific training techniques can be used in injury prevention, rehabilitation post injury and maintenance of the athlete. In this review we will focus on the thoracolumbar and hindlimb areas of the horse and review the importance of muscular control of locomotion, neuromotor control, the physiological effects of training and practical ways to maximise performance potential by specific physiotherapy skills training.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: fibre type; motor learning; motor skills; muscle; stamina; strength

Document Type: Research Article

Publication date: September 7, 2017

More about this publication?
  • 'Comparative Exercise Physiology' is the only international peer-reviewed scientific journal specifically dealing with the latest research in exercise physiology across all animal species, including humans. The major objective of the journal is to use this comparative approach to better understand the physiological, nutritional, and biochemical parameters that determine levels of performance and athletic achievement. Core subjects include exercise physiology, biomechanics, gait (including the effect of riders in equestrian sport), nutrition and biochemistry, injury and rehabilitation, psychology and behaviour, and breeding and genetics. This comparative and integrative approach to exercise science ultimately highlights the similarities as well as the differences between humans, horses, dogs, and other athletic or non-athletic species during exercise. The result is a unique forum for new information that serves as a resource for all who want to understand the physiological challenges with exercise.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Partnerships
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more