Skip to main content

A novel phase-aligned analysis on motion patterns of table tennis strokes

Notice

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

A wide range of human motion represent repetitive patterns particularly in racket sports. Quantitative analysis of the continuous variables during the different phases of the motion cycle helps to investigate more deeply the specific movement of the racket or player. Table tennis biomechanics research to date lacks the necessary detail of phase decomposition and phase-based quantitative analysis. Therefore, this study proposes a novel velocity-based piecewise alignment method to identify the different phases of a table tennis forehand stroke. A controlled experiment was conducted on a number of players of two differing ability levels (experts vs. novices) to implement this novel methodology. Detailed results are shown for the quantitative analysis on multiple strokes of the two groups of participants. Significant differences were found in both the displacement and velocity of the racket movement in the backswing, forward swing and follow-through phases. For example, it is clear that experts' strokes show higher racket resultant velocity than novices during both the forward swing and follow-through phases by up to a factor of two. Furthermore, the phase-based approach to analysing racket motions leads to interrogation over a greater duration than the traditional time-based method which is generally only concerned with impact ±0.25s.

Keywords: PHASE ALIGNMENT; RACKET MOTION; TABLE TENNIS BIOMECHANICS

Document Type: Research Article

Publication date: April 1, 2016

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content