Skip to main content
padlock icon - secure page this page is secure

Direct and indirect impacts of shoreline development on shallow-water benthic communities in a depauperate estuarine system

Buy Article:

$17.00 plus tax (Refund Policy)

Modification of natural coastlines is prevalent as human coastal populations swell and effects of global climate change become clearer. We investigated effects of shoreline hardening and environmental factors on benthic infauna and trophic structure in the Patuxent River, Maryland, a stressed mesohaline Chesapeake Bay tributary. We characterized differences in density, diversity, biomass, and trophic structure for large (>3 mm) and small (>500 μm) infauna adjacent to natural marsh, riprap, and bulkhead (i.e., seawall) shores throughout the river. Akaike information criterion model comparisons were used to assess the evidence for differences in benthic infaunal structure using primary (shoreline type) and secondary (e.g., sediment grain size, predator abundance) variables. There was strong evidence for secondary factors to explain reduced biomass of infauna adjacent to developed shorelines. For large infauna, evidence suggested that shorelines with riprap had reduced diversity, and with bulkhead had increased diversity. Increased wave energy and chlorophyll-a were associated with high densities for both size fractions riprap shorelines. Trends suggested high biomass and more carnivores, omnivores, and deposit feeders adjacent to natural marshes, compared to low biomass and more filter feeders at developed shorelines. While similar studies in lower Chesapeake Bay systems have shown clear effects of shoreline type on benthic communities, the extensive development in the Patuxent River may contribute to larger-scale stress, yet some shoreline-specific effects were detected. Non-parametric tests revealed differences in infaunal communities by shoreline type and river zone. Thus, the benthic community in this estuary is driven by local shoreline effects, as well as large-scale physical and biotic factors.
No Reference information available - sign in for access.
No Citation information available - sign in for access.

1 item.

No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Virginia Institute of Marine Science, College of William & Mary, P.O. Box 1346, Gloucester Point, Virginia 23062;, Email: [email protected] 2: Virginia Institute of Marine Science, College of William & Mary, P.O.Box 1346, Gloucester Point, Virginia 23062

Publication date: 01 July 2017

This article was made available online on 03 January 2017 as a Fast Track article with title: "Direct and indirect impacts of shoreline development on shallow-water benthic communities in a depauperate estuarine system".

More about this publication?
  • The Bulletin of Marine Science is dedicated to the dissemination of high quality research from the world's oceans. All aspects of marine science are treated by the Bulletin of Marine Science, including papers in marine biology, biological oceanography, fisheries, marine affairs, applied marine physics, marine geology and geophysics, marine and atmospheric chemistry, and meteorology and physical oceanography.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more