Skip to main content
padlock icon - secure page this page is secure

Humane euthanasia of neonates I: validation of the effectiveness of the Zephyr EXL non-penetrating captive-bolt euthanasia system on neonate piglets up to 10.9 kg live-weight

Buy Article:

$25.00 + tax (Refund Policy)

To determine if mechanical blunt force trauma using a non-penetrating captive bolt was a viable method of producing an immediate stun/kill in neonate piglets (Sus scrofa domesticus) as an alternative to manual blunt force trauma. Piglets (n = 60) were acquired from a local producer and allocated to one of five weight ranges: birth weight to 3 kg (n = 12); 3 to 5 kg (n = 11); 5 to 7 kg (n = 13); 7 to 9 kg (n = 13); and 9 to 11 kg (n = 11). These piglets with an average live-weight of 6.1 kg were anaesthetised and electroen-cephalogram (EEG) recording electrodes inserted sub-dermally over the right cranium to allow recording of Visual Evoked Potentials (VEPs). Following recording of baseline VEPs in the anaesthetised state, the piglet was shot once in the frontal-parietal position with a Bock Industries Zephyr EXL non-penetrating captive bolt powered by 120 psi air pressure. Movement scoring, behavioural indices of loss of brain function and VEPs were monitored throughout. VEPs were lost immediately in all piglets shot when the head was resting on a hard surface. This experiment demonstrates that mechanical blunt-force trauma, using a single-shot, non-penetrating captive bolt, such as the Zephyr EXL, provides for an immediate stun kill in neonate piglets up to 10.9 kg live-weight. This immediacy of action, combined with reproducible effects will improve the welfare of piglets to be subjected to on-farm euthanasia due to disease, ill-thrift or other commercial concerns.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: ANIMAL WELFARE; CAPTIVE BOLT; EUTHANASIA; MECHANICAL STUNNING; PIGLET; VISUAL EVOKED POTENTIALS

Document Type: Research Article

Publication date: 01 February 2017

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more