Skip to main content

Open Access Reduced Expression of Jumonji AT-Rich Interactive Domain 2 (JARID2) in Glioma Inhibits Tumor Growth In Vitro and In Vivo

Jumonji AT-rich interactive domain 2 (JARID2) is a member of the Jumonji family of proteins and has been proposed as an oncogene in several types of human cancer. However, the role of JARID2 in human glioma has not yet been understood. The present study was designed to determine the roles of JARID2 in the proliferation and migration in human glioma cells and the growth of glioma cells in nude mice. Our data indicate that JARID2 is upregulated in human glioma tissues and cell lines. Knockdown of JARID2 obviously inhibits the proliferation of U87MG cells and tumor growth in vivo. Furthermore, knockdown of JARID2 inhibits migration and invasion as well as the epithelial‐mesenchymal transition (EMT) process in U87MG cells. Mechanistically, knockdown of JARID2 reduces the phosphorylation levels of PI3K and Akt in U87MG cells. In summary, our study is the first one in our knowledge to indicate that JARID2 plays an important role in glioma development and progression. Therefore, JARID2 may serve as a potential therapeutic target for the treatment of glioma.

Keywords: Glioma; Invasion; Jumonji AT-rich interactive domain 2 (JARID2); Proliferation

Document Type: Research Article

Affiliations: 1: Department of Neurology, Huaihe Hospital of Henan University, Kaifeng, P.R. China 2: Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China 3: Department of Neurosurgery, Tiantan Hospital, Capital Medical University, Beijing, P.R. China

Publication date: March 13, 2017

More about this publication?
  • Formerly: Oncology Research Incorporating Anti-Cancer Drug Design
    Oncology Research Featuring Preclinical and Clincal Cancer Therapeutics publishes research of the highest quality that contributes to an understanding of cancer in areas of molecular biology, cell biology, biochemistry, biophysics, genetics, biology, endocrinology, and immunology, as well as studies on the mechanism of action of carcinogens and therapeutic agents, reports dealing with cancer prevention and epidemiology, and clinical trials delineating effective new therapeutic regimens.

    From Volume 23, Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics is Open Access under the terms of the Creative Commons CC BY-NC-ND license.

  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content