Skip to main content
padlock icon - secure page this page is secure

Open Access Influence of Water and Humidity on Wood Modification with Lactic Acid

Download Article:
 Download
(PDF 272.6 kb)
 

This article is Open Access under the terms of the Creative Commons CC BY licence.

Impregnation of dry wood with pure lactic acid oligomers (OLAs) followed by heat treatment confers promising properties to wood because of OLA's good diffusion, in-situ polymerization and persistence in cell walls. Treatment provides drastic reduction of the equilibrium moisture content, high dimensional stability and good durability. The presence of water during treatment has been evaluated. Curing of OLA impregnated dry wood in humid atmosphere leads to a strong and global degradation of the material. OLA treatment of wet wood only impacts the water leaching rate negatively. Treatment of dry wood with OLA diluted in water additionally decreases the biological resistance and is not efficient for decreasing hygroscopicity. Treatment of dry wood with lactic acid solution leads to a lower polymerization level but confers good properties.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Keywords: HEAT TREATMENT; LACTIC ACID; WOOD IMPREGNATION; WOOD MODIFICATION

Document Type: Research Article

Publication date: 01 April 2018

More about this publication?
  • This journal publishes high quality peer reviewed original research and review articles on macromolecules and additives obtained from renewable/biobased resources. Utilizing a multidisciplinary approach, JRM introduces cutting-edge research on biobased monomers, polymers, additives (both organic and inorganic), their blends and composites. JRM showcases both fundamental aspects and applications of renewable materials. The fundamental topics include the synthesis and polymerization of biobased monomers and macromonomers, the chemical modification of natural polymers, as well as the characterization, structure-property relationships, processing, recycling, bio and environmental degradation and life cycle analysis of the ensuing materials, in view of their potential applications. Within this sustainability approach, green chemistry processes and studies falling within biorefinery contexts are strongly favored.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more