Skip to main content
padlock icon - secure page this page is secure

Open Access Biobased Polyols Using Thiol-Ene Chemistry for Rigid Polyurethane Foams with Enhanced Flame-Retardant Properties

Download Article:
 Download
(PDF 4,373.3 kb)
 

This article is Open Access under the terms of the Creative Commons CC BY licence.

Biobased polyol was synthesized using 1-thioglycerol and limonene, an extract of orange peel, via thiol-ene chemistry as an alternative to petrochemical-based polyol for preparation of rigid polyurethane foams (RPFs). Fire-retardant polyurethane foams were prepared by addition of different amounts of dimethyl methyl phosphonate (DMMP) in the polyol. The effect of DMMP on the properties of RPFs was studied. All the biobased RPFs maintained a regular cell structure with uniform cell distribution and over 90% of closed cell. The RPFs showed excellent compressive strength of ∼230 kPa without addition of DMMP. These RPFs almost retained their specific compressive strength even when 2 parts by weight (pbw) of DMMP was added but with significant improvement in fire retardancy. Horizontal burning test of RPFs containing only 2 pbw of DMMP showed reduction in burning time by ∼83% compared to the neat sample. Weight loss during the burning test for the control sample was nearly 50% and this was reduced significantly by addition of 2 pbw of DMMP to merely 7%. TGA analysis indicated that the improved flame retardancy could be attributed to the release of DMMP at the temperature range of 100 °C to 250 °C.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Keywords: BIOBASED POLYOL; FLAME-RETARDANT FOAM; POLYURETHANES; RIGID FOAM; THIOL-ENE REACTION

Document Type: Research Article

Publication date: January 1, 2017

More about this publication?
  • This journal publishes high quality peer reviewed original research and review articles on macromolecules and additives obtained from renewable/biobased resources. Utilizing a multidisciplinary approach, JRM introduces cutting-edge research on biobased monomers, polymers, additives (both organic and inorganic), their blends and composites. JRM showcases both fundamental aspects and applications of renewable materials. The fundamental topics include the synthesis and polymerization of biobased monomers and macromonomers, the chemical modification of natural polymers, as well as the characterization, structure-property relationships, processing, recycling, bio and environmental degradation and life cycle analysis of the ensuing materials, in view of their potential applications. Within this sustainability approach, green chemistry processes and studies falling within biorefinery contexts are strongly favored.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more