Skip to main content

Open Access New Renewable and Biodegradable Particleboards from Jatropha Press Cakes

Download Article:

The influence of thermo-pressing conditions on the mechanical properties of particleboards obtained from Jatropha press cakes was evaluated in this study. Conditions such as molding temperature and press cake oil content were included. All particleboards were cohesive, with proteins and fibers acting respectively as binder and reinforcing fillers. Generally, it was the molding temperature that most affected particleboard mechanical properties. The most resistant boards were obtained using 200°C molding temperature. Glass transition of proteins then occurred during molding, resulting in effective wetting of the fibers. At this optimal molding temperature, the best compromise between flexural properties (7.2 MPa flexural strength at break and 2153 MPa elastic modulus), Charpy impact strength (0.85 kJ/m2) and Shore D surface hardness (71.6°), was a board obtained from press cake with low oil content (7.7%). Such a particleboard would be usable as interlayer sheets for pallets, for the manufacture of containers or furniture, or in the building trade.

Keywords: Jatropha press cake; lignocellulosic fibers; particleboard; proteins; thermo-pressing

Document Type: Research Article

Publication date: March 1, 2014

More about this publication?
  • This journal publishes high quality peer reviewed original research and review articles on macromolecules and additives obtained from renewable/biobased resources. Utilizing a multidisciplinary approach, JRM introduces cutting-edge research on biobased monomers, polymers, additives (both organic and inorganic), their blends and composites. JRM showcases both fundamental aspects and applications of renewable materials. The fundamental topics include the synthesis and polymerization of biobased monomers and macromonomers, the chemical modification of natural polymers, as well as the characterization, structure-property relationships, processing, recycling, bio and environmental degradation and life cycle analysis of the ensuing materials, in view of their potential applications. Within this sustainability approach, green chemistry processes and studies falling within biorefinery contexts are strongly favored.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content