Skip to main content
padlock icon - secure page this page is secure

Comparative Performance of Bayesian and AIC-Based Measures of Phylogenetic Model Uncertainty

Buy Article:

$61.00 + tax (Refund Policy)

Reversible-jump Markov chain Monte Carlo (RJ-MCMC) is a technique for simultaneously evaluating multiple related (but not necessarily nested) statistical models that has recently been applied to the problem of phylogenetic model selection. Here we use a simulation approach to assess the performance of this method and compare it to Akaike weights, a measure of model uncertainty that is based on the Akaike information criterion. Under conditions where the assumptions of the candidate models matched the generating conditions, both Bayesian and AIC-based methods perform well. The 95% credible interval contained the generating model close to 95% of the time. However, the size of the credible interval differed with the Bayesian credible set containing approximately 25% to 50% fewer models than an AIC-based credible interval. The posterior probability was a better indicator of the correct model than the Akaike weight when all assumptions were met but both measures performed similarly when some model assumptions were violated. Models in the Bayesian posterior distribution were also more similar to the generating model in their number of parameters and were less biased in their complexity. In contrast, Akaike-weighted models were more distant from the generating model and biased towards slightly greater complexity. The AIC–based credible interval appeared to be more robust to the violation of the rate homogeneity assumption. Both AIC and Bayesian approaches suggest that substantial uncertainty can accompany the choice of model for phylogenetic analyses, suggesting that alternative candidate models should be examined in analysis of phylogenetic data. [AIC; Akaike weights; Bayesian phylogenetics; model averaging; model selection; model uncertainty; posterior probability; reversible jump.]
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: School of Biological Sciences, P.O. Box 644236, Pullman, Washington, 99164-4236, USA, Email: [email protected] 2: Section Ecology, Evolution, and Behavior, 9500 Gilman Drive, Muir Biology 0116, La Jolla, California, 92093, USA, Email: [email protected]

Publication date: February 1, 2006

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more