Skip to main content
padlock icon - secure page this page is secure

A Systematic Approach toward Detection of Seagrass Patches from Hyperspectral Imagery

Buy Article:

$63.00 + tax (Refund Policy)

Changes in the coverage of seagrass populations are considered to be a key indicator of the health and biodiversity of coastal ecosystems. The overall extent of seagrass meadows is declining worldwide, primarily due to human-induced disturbances. In Tampa Bay, Florida, a nearly 35% loss of seagrass coverage occurred from the 1950s to the 2000s. This decline was primarily due to the effects of human population growth. To examine closely the continuing declining trend of this major indicator of the health of coastal ecosystems, a systematic approach for extracting seagrass patches using EO-1 Hyperion hyperspectral imagery has been developed. In our previous work, a method based on Locally Excitatory Globally Inhibitory Oscillator Networks (LEGION) was developed and successfully applied to military object recognition using hyperspectral and multispectral imagery. It showed great potential in target detection of hyperspectral imagery. In this work, it is extend and applied in seagrass extraction.

This study includes (a) dimensionality reduction of the hyperspectral data, (b) seagrass extraction using LEGION and four other methods, and (c) analysis and evaluation of the results in an experiment involving two test sites at Tampa Bay, Florida. The results demonstrated that the methodology has the potential to provide timely seagrass coverage information for coastal zone management at greatly increased efficiency.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: EO-1 Hyperion hyperspectral imagery; Seagrass; feature extraction

Document Type: Research Article

Affiliations: 1: Mapping and GIS Laboratory, CEGE,The Ohio State University, Columbus,Ohio, USA 2: School of Resources & Environmental Science,Wuhan University, Wuhan, China

Publication date: July 1, 2012

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more