Skip to main content
padlock icon - secure page this page is secure

Species stratification and upscaling of forest carbon estimates to landscape scale using GeoEye-1 image and lidar data in sub-tropical forests of Nepal

Buy Article:

$60.00 + tax (Refund Policy)

Aboveground forest biomass and carbon estimation at landscape scale is crucial for implementation of REDD+ programmes. This study aims to upscale the forest carbon estimates using GeoEye-1 image and small footprint lidar data from small areas to a landscape level using RapidEye image. Species stratification was carried out based on the spectral separability curve of GeoEye-1 image, and comparison of mean intensity and mean plot height of the trees from lidar data. GeoEye-1 image and lidar data were segmented using region growing approach to delineate individual tree crowns; and the segmented crowns (CPA) of tree were further used to establish a relationship with field measured carbon and total trees’ height. Carbon stock measured from field, individual tree crown (ITC) segmentation approach and area-based approach (ABA) was compared at plot level using one-way ANOVA and post hoc Tukey comparison test. ITC-based carbon estimates was used to establish a relationship with spectral reflectance of RapidEye image variables (NDVI, RedEdge NDVI, PC1, single band of RedEdge, and NIR) to upscale the carbon at landscape level. One-way ANOVA resulted in a highly significant difference (p-value < 0.005) between the mean plot height and lidar intensity to stratify Shorea robusta and Other species successfully. ITC carbon stock estimation models of two major tree species explained about 88% and 79% of the variances, respectively, at 95% confidence level. The ABA estimated carbon was highly correlated (R 2 = 0.83, RMSE = 20.04) to field measured carbon with higher accuracy than the ITC estimated carbon. A weak relationship was observed between the carbon stock and the RapidEye image variables. However, upscaling of carbon estimates from ABA is likely to improve the relationship of the RapidEye variables rather than upscaling the carbon estimates from ITC approach.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Renewable Natural Resources Statistics Division, GIS and Remote Sensing Section, Ministry of Agriculture and Forests, Thimphu, Bhutan 2: Department of Natural Resources, Faculty of Geo-information and Earth Observation (ITC), University of Twente, Enschede, The Netherlands 3: School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Australia

Publication date: October 18, 2019

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more