Skip to main content
padlock icon - secure page this page is secure

Incorporating global-local a Priori knowledge into expectation-maximization for SAR image change detection

Buy Article:

$60.00 + tax (Refund Policy)

Speckle is one of the inevitable obstacles related to synthetic aperture radar (SAR) image change detection; it increases the overlap between changed and unchanged pixels in the histogram of a difference image. This makes the selection of a statistic model more difficult for describing opposite classes. To address this issue, this article developed an unsupervised change-detection approach for multitemporal SAR images that specifies a Priori knowledge about the spatial characteristics of the classes through Dempster-Shafer evidence theory and embeds it into the Expectation-Maximization (EM) iteration process. It is based on the consideration that each pixel in the difference image is unique due to its neighbourhood, although some of them may have the same pixel value. Thus, under the hypothesis that local and global a Priori knowledge are independent sources, a global-local a Priori model is developed through Dempster-Shafer evidence theory. The EM algorithm allows one to estimate the statistical parameters of the opposite classes associated with this a Priori model. As a consequence, the change-detection result can be obtained within the framework of Bayes. Visual and quantitative results obtained on real multitemporal SAR image data sets confirm the effectiveness of the proposed method compared with state-of-the-art ones for SAR image change detection.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: School of Computer Science and Engineering, Xi’an University of Technology (XUT), Xi’an, Shaanxi, China 2: College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang, Hebei, China

Publication date: January 17, 2019

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more