Skip to main content
padlock icon - secure page this page is secure

Very high resolution remote sensing image classification with SEEDS-CNN and scale effect analysis for superpixel CNN classification

Buy Article:

$60.00 + tax (Refund Policy)

Pixel-based convolutional neural network (CNN) has demonstrated good performance in the classification of very high resolution images (VHRI) from which abstract deep features are extracted. However, conventional pixel-based CNN demands large resources in terms of processing time and disk space. Therefore, superpixel CNN classification has recently become a focus of attention. We therefore propose a CNN based deep learning method combining superpixels extracted via energy-driven sampling (SEEDS) for VHRI classification. The approach consists of three main steps. First, based on the concept of geographic object-based image analysis (GEOBIA), the image is segmented into homogeneous superpixels using the SEEDS based superpixel segmentation method thereby decreasing the number of processing units. Second, the training data and testing data are extracted from the image and concatenated on a superpixel level at a variety of scales for CNN. Third, the training data are input to train the parameters of CNN and abstract deep features are extracted from the VHRI. Using these extracted deep features, we classify two VHRI data sets at single scales and multiple scales. To verify the effectiveness of SEEDS based CNN classification, the performance of SEEDS and three others superpixel segmentation algorithms are compared, and the superpixel extraction via SEEDS method was found to be the optimal superpixel segmentation approach for CNN classification. The scale effect on CNN classification accuracy was investigated by comparing the four superpixel segmentation methods. We found that (1) There is no strong evidence that using scales combinations is better than a single scale in some specific situations; (2) Natural objects with low complexity are not as sensitive to scale as artificial objects; (3) For a simple VHRI that contains clear artificial objects and simple texture, the classification result with multiple scales performs better a the single scale; (4) In contrast, for the complex VHRI containing a large number of complex objects, the classification result with a single small-scale best.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: School of Information Engineering, China University of Geosciences (Beijing), Beijing, China 2: Key Laboratory of Virtual Geographic Environment, Nanjing Normal University, Ministry of Education, Nanjing, China

Publication date: January 17, 2019

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more