Skip to main content
padlock icon - secure page this page is secure

Assessing the ability of hybrid poplar for in-situ phytoextraction of cadmium by using UAV-photogrammetry and 3D flow simulator

Buy Article:

$60.00 + tax (Refund Policy)

The purpose of this study is to evaluate the capability of hybrid poplar (Populus deltoides × Populus nigra) to reduce cadmium (Cd) concentrations in an experimental site of Campania Region (southern Italy) subjected to illegal deposit of industrial and household waste. We propose to evaluate the efficiency of poplar for Cd phytoextraction by coupling the use of a process-based, distributed hydrological model (HydroGeoSphere, HGS) with photogrammetric images acquired by Unmanned Aerial Vehicle (UAV). This scenario-based approach exploits in-situ measurements so as to be able to reproduce reliable near-real-world processes. The original bare soil (BS; unplanted reference location) is used as benchmark and compared to the situation where poplar trees are planted (PP) for bioremediation purposes. The ‘virtual’ positions of poplars were chosen by considering the expected Cd accumulation areas that are correlated to topographic indices retrieved from the high-resolution (0.03 × 0.03 m) digital elevation model (DEM) generated by UAV photogrammetric photos. Transfer and accumulation of Cd in the poplars were described by a time-variant sink term featuring the HGS transport equation. The numerical simulations show that poplar trees are able to reduce Cd concentrations by 15%, 36%, and 64% in spring, summer, and autumn, respectively. Coupling an advanced 3D hydrological model with a high-resolution DEM generated by UAV-photogrammetry seems a promising and viable approach for assessing the efficiency of phytoremediation techniques.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Department of Agricultural Sciences, AFBE Division, University of Napoli Federico II, Naples, Italy 2: Department of Architecture, University of Naples Federico II, Naples, Italy

Publication date: August 18, 2018

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more