Skip to main content
padlock icon - secure page this page is secure

Effects of sediments and coloured dissolved organic matter on remote sensing of chlorophyll-a using Landsat TM/ETM+ over turbid waters

Buy Article:

$60.00 + tax (Refund Policy)

Remote sensing of chlorophyll-a is challenging in water containing inorganic suspended sediments (i.e. non-volatile suspended solids, NVSS) and coloured dissolved organic matter (CDOM). The effects of NVSS and CDOM on empirical remote-sensing estimates of chlorophyll-a in inland waters have not been determined on a broad spatial and temporal scale. This study evaluated these effects using a long-term (1989–2012) data set that included chlorophyll-a, NVSS, and CDOM from 39 reservoirs across Missouri (USA). Model comparisons indicated that the machine-learning algorithm BRT (boosted regression trees, validation Nash–Sutcliffe coefficient = 0.350) was better than linear regression (validation Nash–Sutcliffe coefficient = 0.214) for chlorophyll-a estimate using Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) imagery. Only a small proportion of BRT model residuals could be explained by sediments or CDOM, and the observed trends in BRT residuals were different from the theoretical effects expected from NVSS and CDOM. Our results also indicated a small systematic bias by the BRT model, but it was not likely caused by NVSS or CDOM.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Department of Integrative Biology, Michigan State University, East Lansing, MI, USA 2: Department of Geography, Environment, and Spatial Sciences, and Center of Global Change & Earth Observation, Michigan State University, East Lansing, MI, USA 3: School of Natural Resources, University of Missouri, Columbia, MO, USA

Publication date: March 4, 2018

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more