Skip to main content
padlock icon - secure page this page is secure

Shape-based object extraction in high-resolution remote-sensing images using deep Boltzmann machine

Buy Article:

$60.00 + tax (Refund Policy)

In this article, we proposed a novel method based on deep learning shape priors for object extraction in high-resolution (HR) remote-sensing images. Specifically, the deep Boltzmann machines (DBMs) are applied to model the shape priors via the unsupervised training process, which qualify for the advantages of deep learning method, especially the powerful feature learning and modelling ability. The deep shape model is integrated into a new energy function to eliminate the influence of disturbing background. The energy function combines image appearance information and region information. A new region term in the function is proposed to eliminate the influence of object shadow. The process of object extraction is achieved by minimizing the energy function with an iterative optimization algorithm and the Split Bregman method is applied to derive a global solution during the minimization process. Quantitative and qualitative experiments are conducted on the aircraft data set acquired by QuickBird with 60 cm resolution and the results demonstrate the effectiveness of the proposed method.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: College of Electronic Science and Engineering, National University of Defense Technology, Changsha, China 2: Key Laboratory of Spatial Information Processing and Application System Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, China 3: School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China

Publication date: December 16, 2016

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more