Skip to main content
padlock icon - secure page this page is secure

Airborne radiation mapping: overview and application of current and future aerial systems

Buy Article:

$60.00 + tax (Refund Policy)

Nuclear power and associated activities are never far from scrutiny, the apparent advantages of the technology are juxtaposed by the risk of incidents perceived as being catastrophic. If a major nuclear incident was to occur, an important aspect of the response management to any radionuclide release would be the need to rapidly establish the spatial distributions and quantities of these released radionuclides, their type in addition to their corresponding activity. The data received from surveys would directly inform evacuation plans, on-site incident management strategies as well as protecting both workforce and public from harm. The disaster at the Fukushima Daiichi Nuclear Power Plant in 2011 is perhaps the best example of the requirement for real time data collection to inform crucial decisions. Previous reviews of the event have observed that because the static on-site radiation detector network was destroyed by the 15 m high tsunami (following the magnitude 9.0 Great Tōhoku earthquake), it was not possible to immediately determine the radionuclide activity in the area and the danger presented to the responding workforce. Such preceding works have retrospectively highlighted the usefulness of unmanned aerial systems in providing real-time data within nuclear and non-nuclear settings. The establishment of an arbitrary 20 km exclusion zone surrounding the Fukushima Daiichi plant, with the displacement of over 150,000 people, has been viewed by many as an over-reaction – with many not having been required to be evacuated. This review examines and evaluates the previous as well as current work on aerial radiation monitoring and the future improvement that might be delivered by a combined three-dimensional (3D) radiation mapping platform. Combining detailed 3D topographical mapping with radiation surveying has powerful implications for the way that radiological contamination across a site might be measured and displayed in the future, both following radiological release events and in routine site monitoring.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: School of Earth Sciences, University of Bristol, Bristol, UK 2: Interface Analysis Centre, HH Wills Physics Laboratory, University of Bristol, Bristol, UK

Publication date: December 16, 2016

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more