Skip to main content
padlock icon - secure page this page is secure

General approach to the formulation and solution of the multi-parameter inverse problems of atmospheric remote sensing with measurements and constraints of different types

Buy Article:

$61.00 + tax (Refund Policy)

A general approach to the formulation and solution of the multi-parameter inverse problems of atmospheric remote sensing with measurements and constraints of different types is considered, which is based on the concept of the presentation of constraints as virtual measurements of finite accuracy. The advantages of the approach are (1) the possibility to account for all kinds of available information (remote and in situ measurements, physical constraints, model predictions); (2) the unified description of different measurements, a priori information and constraints in the retrieval algorithm; (3) the possibility to use measurements and a priori information of different types in any combination and to assess individual contributions to information content. The approach can be considered as a convenient tool for implementation of different synergistic remote-sensing schemes and for utilization of maximum available information on sought parameters for the purpose of increasing the accuracy of atmospheric remote sensing and providing self-consistency of sets of retrieved parameters. The known formulae for degrees of freedom for signal, averaging kernels, error components, and parameters describing spatial resolution are generalized to the case of multiple sought variables, measurements, and constraints, and the peculiar features of such generalization are discussed. The example is given of the application of the approach to the interpretation of the middle atmosphere limb infrared radiance data obtained in CRISTA (Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere) experiments with special emphasis on the constraints describing coupling of the parameters due to physical processes.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Department of Atmospheric Physics, Faculty of Physics, St Petersburg State University, 198504, St Petersburg, Russia

Publication date: June 3, 2015

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more