Skip to main content
padlock icon - secure page this page is secure

Fully spatially adaptive smoothing parameter estimation for Markov random field super-resolution mapping of remotely sensed images

Buy Article:

$60.00 + tax (Refund Policy)

This article presents a fully spatially adaptive Markov random field (MRF)-based super-resolution mapping (SRM) technique to produce land-cover maps at a finer spatial resolution than the original coarse-resolution image. MRF combines the spectral and spatial energies; hence, an MRF-SRM technique requires a smoothing parameter to manage the contributions of these energies. The main aim of this article is to introduce a new method called fully spatially adaptive MRF-SRM to automatically determine the smoothing parameter, overcoming limitations of the previously proposed approaches. This method estimates the number of endmembers in each image and uses them to assess the proportions of classes within each coarse pixel by a linear spectral unmixing method. Then, the real pixel intensity vectors and the local properties of each coarse pixel are used to compute the local spectral energy change matrix and the local spatial energy change matrix for each coarse pixel. Each pair of matrices represents all possible situations in spatial and spectral energy change for each coarse pixel and can be used to examine the balance between spatial and spectral energies, and hence to estimate a smoothing parameter for each coarse pixel. Thus, the estimated smoothing parameter is fully spatially adaptive with respect to real pixel spectral vectors and their local properties. The performance of this method is evaluated using two synthetic images and an EO1-ALI (The Advanced Land Imager instrument on Earth Observing-1 satellite) multispectral remotely sensed image. Our experiments show that the proposed method outperforms the state-of-the-art techniques.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Surveying and Geospatial Engineering, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia 2: Inria Sophia-Antipolis Méditerranée, TITANE Team, 06902, Sophia Antipolis, France

Publication date: June 3, 2015

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more