Skip to main content
padlock icon - secure page this page is secure

Adaptive quantized PCA with 3D prediction and positive packing for lossless compression of ultraspectral sounder data

Buy Article:

$60.00 + tax (Refund Policy)

Given the unprecedented size of three-dimensional ultraspectral sounder data with high spectral resolution, lossless compression is preferable to avoid substantial degradation of the geophysical retrieval. A lossless compression method for ultraspectral sounder data is therefore developed. A quantized-principal-component-analysis-based scheme is presented by combining 3D prediction, positive mapping, and histogram packing using binary indexing vectors (positive packing) followed by a range coder. In order to achieve the optimal trade-off between residual errors and side information, an algorithm is proposed to determine adaptively the number of selected PCs and quantization parameters. Numerical experiments show that the proposed method outperforms the state-of-the-art methods (i.e. linear prediction with constant coefficients (LP-CC) and linear prediction with optimal granule ordering (LP-OGO)) by 1.77% in terms of compression ratio.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Department of Information Engineering, Harbin Institute of Technology, Harbin, China 2: Space Science and Engineering Center, University of Wisconsin-Madison, Madison, WI, USA

Publication date: March 19, 2015

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more