Skip to main content
padlock icon - secure page this page is secure

Comparison of support vector machine, artificial neural network, and spectral angle mapper algorithms for crop classification using LISS IV data

Buy Article:

$60.00 + tax (Refund Policy)

The Resourcesat-2 is a highly suitable satellite for crop classification studies with its improved features and capabilities. Data from one of its sensors, the linear imaging and self-scanning (LISS IV), which has a spatial resolution of 5.8 m, was used to compare the relative accuracies achieved by support vector machine (SVM), artificial neural network (ANN), and spectral angle mapper (SAM) algorithms for the classification of various crops and non-crop covering a part of Varanasi district, Uttar Pradesh, India. The separability analysis was performed using a transformed divergence (TD) method between categories to assess the quality of training samples. The outcome of the present study indicates better performance of SVM and ANN algorithms in comparison to SAM for the classification using LISS IV sensor data. The overall accuracies obtained by SVM and ANN were 93.45% and 92.32%, respectively, whereas the lower accuracy of 74.99% was achieved using the SAM algorithm through error matrix analysis. Results derived from SVM, ANN, and SAM classification algorithms were validated with the ground truth information acquired by the field visit on the same day of satellite data acquisition.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Department of Physics, Indian Institute of Technology (BHU), Varanasi, India

Publication date: March 19, 2015

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more