Skip to main content
padlock icon - secure page this page is secure

A novel method for assessing the segmentation quality of high-spatial resolution remote-sensing images

Buy Article:

$60.00 + tax (Refund Policy)

Image segmentation quality significantly affects subsequent image classification accuracy. It is necessary to develop effective methods for assessing image segmentation quality. In this paper, we present a novel method for assessing the segmentation quality of high-spatial resolution remote-sensing images by measuring both area and position discrepancies between the delineated image region (DIR) and the actual image region (AIR) of a scene object. In comparison with the most frequently used area coincidence-based methods, our method can assess the segmentation quality more objectively in that it takes into consideration all image objects intersecting with the AIR of a scene object. Moreover, the proposed method is more convenient to use than the existing boundary coincidence-based methods in that the calculation of the distance between the boundary of the image object and that of the corresponding AIR of the scene object is not required. Another benefit of this method over the two types of method above is that the assessment procedure of the segmentation quality can be conducted with less human intervention. The obtained optimal segmentation result can ensure maximal delineation of the extent of scene objects and can be beneficial to subsequent classification operations. The experimental results have shown the effectiveness of this new method for both segmentation quality assessment and optimal segmentation parameter selection.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: State Key Laboratory of Remote Sensing Science, Research Centre for Remote Sensing and GIS, and School of Geography, Beijing Normal University, Beijing, 100875, China

Publication date: May 19, 2014

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more