Skip to main content
padlock icon - secure page this page is secure

Comparisons of regression tree models for sub-pixel imperviousness estimation in a Gulf Coast city of Mississippi, USA

Buy Article:

$61.00 + tax (Refund Policy)

We studied the impact of shaded impervious surface area (ISA), atmospheric correction, and seasonal sensitivity, which have been generally ignored in previous studies, on ISA estimation at the sub-pixel scale using regression tree modelling. The study area is Pascagoula City on the Mississippi Gulf Coast, USA. Results showed that inclusion of shaded ISA as the response variable improved the model performance by reducing average error (AE) from 10.17 to 9.36%. Modelling with model-based atmospherically corrected imagery as predictors further reduced AE to 9.27%. The regression tree model using summer imagery as predictors (summer model) finally improved AE to 8.56%, compared with 9.28%, 9.50%, and 8.80% when using early spring, late spring, and autumn images as predictors, respectively; therefore the summer model was considered the optimal model. It was further applied to other seasonal images (i.e. early spring, late spring, and autumn images, as predictors) and the AE was 9.93%, 10.09%, and 9.12%, respectively, showing low seasonal sensitivity within this region. The findings in our study improved the modelling accuracy and expanded the scope of its future application in ISA estimation.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Department of Coastal Sciences, The University of Southern Mississippi, Ocean Springs, MS, 39564, USA

Publication date: May 19, 2014

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more